- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hwang, Seokyon (2)
-
Tokgoz, Berna Eren (2)
-
Zhang, Jing (2)
-
Alam, Md Morshedul (1)
-
Ravishankar, Premkumar (1)
-
Zhang, Xulong (1)
-
Zhu, Zanbo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
A. Ghate, K. Krishnaiyer (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A. Ghate, K. Krishnaiyer (Ed.)
-
Automatic Utility Pole Inclination Angle Measurement Using Unmanned Aerial Vehicle and Deep LearningZhu, Zanbo; Zhang, Jing; Alam, Md Morshedul; Tokgoz, Berna Eren; Hwang, Seokyon (, Proceedings of the Institute of Industrial and Systems Engineers Annual conference 2019)Measuring the inclination angles of utility poles of the electric power distribution lines is critical to maintain power distribution systems and minimize power outages, because the poles are very vulnerable to natural disasters. However, traditional human-based pole inspection methods are very costly and require heavy workloads. In this paper, we propose a novel pole monitoring system to measure the inclination angle of utility poles from images captured by unmanned aerial vehicle (UAV) automatically. A state-of-the-art deep learning neural network is used to detect and segment utility poles from UAV street view images, and computer vision techniques are used to calculate the inclination angles based on the segmented poles. The proposed method was evaluated using 64 images with 84 utility poles taken in different weather conditions. The pole segmentation accuracy is 93.74% and the average inclination angle error is 0.59 degrees, which demonstrate the efficiency of the proposed utility pole monitoring system.more » « less
An official website of the United States government

Full Text Available